The Management of Iron Deficiency Anemia in Obstetrics and Gynecology

Anemia is an extremely common condition, in both developed and undeveloped countries. Data from the World Health Organization Vitamin and Mineral Nutrition Information System for 1993-2005, estimated the global anemia prevalence as 24.8%, affecting 1.62 billion people. Of those affected, 41.8% occurred in pregnant women and 30.2% in non-pregnant women. This equates to 56 million pregnant women and 468 million non-pregnant women worldwide.1

The effects of anemia are an independent risk factor of morbidity, and mortality in both the mother and fetus. Iron deficiency is responsible for more than fifty percent of all cases.2

Causes of Iron Deficiency Anemia
The most common cause of iron deficiency anemia (IDA) in pre-menopausal women is menstrual blood loss. In post-menopausal women, blood loss from the gastrointestinal tract is more common.

Symptoms of Iron Deficiency Anemia
- Easy fatigability
- Decreased functional capacity and exercise tolerance
- Depression
- Cold intolerance

More troublesome symptoms include
- Restless legs syndrome
- Eating disturbances such as pagophagia, a form of pica causing a pathological craving for ice. Such eating disturbances are often misrecognized leading to missed opportunities to detect anemia earlier

Consequences of Anemia
The consequences of anemia are protean irrespective of gender, or age; some of the adverse outcomes are:3
- Decreased cognitive function
- Decreased concentration and attention
- Increased preterm delivery
- Intrauterine growth retardation
- Fetal demise in utero
- Increased maternal and fetal infection risk
- Disturbed post-partum maternal–infant interaction
- Delayed growth and development

More worrisome is a recent report by Congdon et al, which studied longitudinal outcomes of long-term effects of iron deficiency at birth on the neural correlates of recognition, memory and cognition in children and concluded, not only do iron deficient neonates have delayed growth and development but a statistically significantly increase in the number of cognitive and behavioral abnormalities up to ten years after iron repletion.4

Pregnancy
During pregnancy, physiologic changes such as hemodilution result in plasma volume expansion, estimated to be approximately 40-50% until the 30th week of gestation. In addition a 20-30% increase in red blood cell mass is observed. This decrement in measured hemoglobin is complicated by iron deficiency at a time when there is increased maternal and fetal erythropoiesis. The preferential transfer of maternal iron to the fetus to meet red blood cell synthesis requirements, leads to further iron depletion. During delivery blood loss ranging from 250 mls to greater than 1000 mls further exacerbates the deficient state.

Postpartum
In the postpartum period as the physiologic manifestations of pregnancy abate, under normal circumstances anemia resolves. However with coexisting comorbidities such as multiparity, obesity, anemia during pregnancy, and age < 20 years may delay recovery.5,6 Socioeconomic factors especially malnutrition have a complex interplay in the development of post-partum anemia which is supported by data from the Special Supplemental Nutrition program for women, infants and children’s study. Of nearly 60,000 participants, 27% overall, 40% of Hispanic, and 48% of African Americans were found to be anemic between 4-26 weeks.
postpartum, despite having normal hemoglobin levels during pregnancy.\(^5\)

Heavy Uterine Bleeding

In premenopausal women, when menstrual blood loss exceeds 80 milliliters per cycle or lasts for more than 7 days, iron deficiency develops over time. In postmenopausal women, the prevalence varies widely, often due to multiple factors which include nutritional deficiencies such as folate or vitamin B12, gastrointestinal iron losses and anemia due to chronic inflammation.

Treatment

Irrespective of etiology the recognition of anemia and prompt attempts to identify and correct the problem are key to eliminating the symptoms associated with decreased hemoglobin and identify potentially dangerous causes. Iron supplementation should be individualized with special attention given to correcting hemoglobin to normal levels and replenishing iron stores.

Oral Iron

Oral iron is the current first line standard, however 70% of those to whom it is prescribed report significant gastrointestinal perturbation markedly limiting adherence. In such cases and when more rapid correction is required, intravenous iron is preferred. Complete replacement dosing can now be administered in 15-60 minutes. To date no serious adverse events have been reported in gravidas. In pregnant patients intolerant of, or unresponsive to, oral iron therapy, intravenous iron should be administered to rapidly meet the body’s demands without the difficult gastrointestinal toxicities of nausea, vomiting, colicky abdominal pain, diarrhea and constipation.

IV Iron

There are currently six intravenous iron formulations approved for use in the USA. One of these, high molecular weight iron dextran (Dexferrum, American region, Shirley New York), based on the preponderance of published evidence, is associated with a disproportionately high frequency of adverse events and will not be discussed further. Low molecular weight iron dextran, sodium ferric gluconate, iron sucrose, ferumoxytol and the recently approved ferric carboxymaltose, when administered according to recommended guidelines are all safe and effective. There is currently no data on ferumoxytol use in gravidas.

Breymann et al, in a study of 1 gram of iron sucrose administered in five divided doses to greater than 500 women of gestational age 16 weeks and older with a diagnosis of IDA, concluded this formulation was safe and efficacious for use in pregnancy and the post partum period, supporting existing published data.\(^7\)

Ayub et al, studied 100 women of gestational age greater than 12 weeks with a confirmed diagnosis of IDA and concluded that complete replacement dosing in a single setting, with low molecular weight iron dextran is an effective and safe method.\(^8\)

This is supported in a recent publication by Auerbach et al, which evaluated the safety and efficacy of the rapid administration of 1 gram of low molecular weight iron dextran in 1 hour. In this study, 164 infusions in 157 pregnant women (second and third trimester), observed only four adverse reactions which resolved without intervention. These findings were consistent with the remaining study population.\(^9\)

Reveiz et al, in the Cochrane database review of treatment of IDA in pregnancy, concluded that intravenous iron administration was superior to oral iron in achieving improvement in hemoglobin levels. Nonetheless unsubstantiated concerns about possible adverse effects such as thrombosis and allergic reactions were noted.\(^10\) Large, appropriately powered randomized trials are necessary to clarify these concerns.

In conclusion, anemia in particular IDA, affects a tremendous number of women adversely, impacting the quality of life, increasing morbidity and mortality and is associated with poor fetal outcomes. Its early recognition and treatment should be a global issue.
References

Disclaimer

This content is covered by an important disclaimer that can be found at www.iron.sabm.org. Please read this disclaimer carefully before reviewing this content.